Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2).

نویسندگان

  • S Banka
  • D Lederer
  • V Benoit
  • E Jenkins
  • E Howard
  • S Bunstone
  • B Kerr
  • S McKee
  • I C Lloyd
  • D Shears
  • H Stewart
  • S M White
  • R Savarirayan
  • G M S Mancini
  • D Beysen
  • R D Cohn
  • B Grisart
  • I Maystadt
  • D Donnai
چکیده

We describe seven patients with KDM6A (located on Xp11.3 and encodes UTX) mutations, a rare cause of Kabuki syndrome (KS2, MIM 300867) and report, for the first time, germ-line missense and splice-site mutations in the gene. We demonstrate that less than 5% cases of Kabuki syndrome are due to KDM6A mutations. Our work shows that similar to the commoner Type 1 Kabuki syndrome (KS1, MIM 147920) caused by KMT2D (previously called MLL2) mutations, KS2 patients are characterized by hypotonia and feeding difficulties during infancy and poor postnatal growth and short stature. Unlike KS1, developmental delay and learning disability are generally moderate-severe in boys but mild-moderate in girls with KS2. Some girls may have a normal developmental profile. Speech and cognition tend to be more severely affected than motor development. Increased susceptibility to infections, join laxity, heart, dental and ophthalmological anomalies are common. Hypoglycaemia is more common in KS2 than in KS1. Facial dysmorphism with KDM6A mutations is variable and diagnosis on facial gestalt alone may be difficult in some patients. Hypertrichosis, long halluces and large central incisors may be useful clues to an underlying KDM6A mutation in some patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome.

Kabuki syndrome, a congenital craniofacial disorder, manifests from mutations in an X-linked histone H3 lysine 27 demethylase (UTX/KDM6A) or a H3 lysine 4 methylase (KMT2D). However, the cellular and molecular etiology of histone-modifying enzymes in craniofacial disorders is unknown. We now establish Kabuki syndrome as a neurocristopathy, whereby the majority of clinical features are modeled i...

متن کامل

Clinical and Neurobehavioral Features of Three Novel Kabuki Syndrome Patients with Mosaic KMT2D Mutations and a Review of Literature

Kabuki syndrome (KS) is a rare disorder characterized by multiple congenital anomalies and variable intellectual disability caused by mutations in KMT2D/MLL2 and KDM6A/UTX, two interacting chromatin modifier responsible respectively for 56-75% and 5-8% of the cases. To date, three KS patients with mosaic KMT2D deletions in blood lymphocytes have been described. We report on three additional sub...

متن کامل

The H3K27me3 demethylase UTX in normal development and disease

In 2007, the Ubiquitously Transcribed Tetratricopeptide Repeat on chromosome X (UTX) was identified as a histone demethylase that specifically targets di- and tri-methyl groups on lysine 27 of histone H3 (H3K27me2/3). Since then, UTX has been proven essential during normal development, as it is critically required for correct reprogramming, embryonic development and tissue-specific differentiat...

متن کامل

Molecular Analysis, Pathogenic Mechanisms, and Readthrough Therapy on a Large Cohort of Kabuki Syndrome Patients

Kabuki syndrome (KS) is a multiple congenital anomalies syndrome characterized by characteristic facial features and varying degrees of mental retardation, caused by mutations in KMT2D/MLL2 and KDM6A/UTX genes. In this study, we performed a mutational screening on 303 Kabuki patients by direct sequencing, MLPA, and quantitative PCR identifying 133 KMT2D, 62 never described before, and four KDM6...

متن کامل

Kabuki syndrome: clinical and molecular characteristics

Kabuki syndrome (KS) is a rare syndrome characterized by multiple congenital anomalies and mental retardation. Other characteristics include a peculiar facial gestalt, short stature, skeletal and visceral abnormalities, cardiac anomalies, and immunological defects. Whole exome sequencing has uncovered the genetic basis of KS. Prior to 2013, there was no molecular genetic information about KS in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical genetics

دوره 87 3  شماره 

صفحات  -

تاریخ انتشار 2015